I TETRATHLON MATEMATICO

Round 1 - Algebra Durata 20 minuti + 5 minuti di tempo per inserimento

Problemi da 1 punto

- 1. Siano m,n numeri interi tali che $m^2 + n^2 = 1$. Determinare il valore di mn.
- 2. Sia x un numero reale. Stabilire la verità o la falsità delle seguenti affermazioni.
- i) Vale $x^2 < x$ se 0 < x < 1.
- ii) Vale $x^2 < x$ se e solo se 0 < x < 1
- iii) Se $x^2 > x$ allora x > 1.

Formattare la risposta nel seguente modo: indicare "1" se si ritiene un'affermazione vera e "0" se si ritiene che essa sia falsa per ogni domanda. Ad esempio, se si pensa che siano tutte false tranne la 2, dare come risposta 010.

3. Siano a,b,c numeri reali con $a \neq 0$. Considerato il polinomio $p(x) = ax^2 + bx + c$, sappiamo che esiste un numero reale k tale che p(k) > p(r) per ogni numero reale $r \neq k$.

Quanti sono al massimo i coefficienti reali positivi di p(x)?

- 4. Determinare il minimo valore che può assumere l'espressione $\frac{2020x}{y} + \frac{y}{2020x}$ sapendo che x, y sono reali positivi tali che x + y = 2020.
- 5. Sia $p(x) = x^2 20x + k$. Sapendo che le radici di p(x) sono tutte intere e positive, quanto vale come minimo k?

Problemi da 2 punti

- 6. x, y sono dei numeri eventualmente complessi che soddisfano $x^2y + xy^2 = 18$ e (x + 1)(y + 1) = 10. Determinare quanto vale al massimo $x^2 + y^2$.
- 7. Detto R(x) il polinomio ottenuto come resto dopo la divisione tra il polinomio $x^{2020} + 1$ e $x^2 + 1$, determinare il valore di R(10).
- 8. Determinare quanti sono i coefficienti multipli di 2 nel polinomio futuristico:

$$F(x) = (x - 2020)(x - 2021)(x - 2022)(x - 2023) \dots (x - 2029)(x - 2030)$$

Attenzione: Per coefficienti si intendono anche eventuali valori nulli che moltiplicano x^k con $0 \le k \le 11$.

- 9. Calcolare la somma infinita $\frac{1}{2020} + \frac{2}{2020^2} + \frac{3}{2020^3} + \cdots$. Dopo aver ridotto la frazione ai minimi termini, dare come risposta le ultime 4 cifre del denominatore.
- 10. Nel polinomio p(x) = (x-1)(x+1)(x-2)(x+2)(x-3)(x+3) quanto vale il coefficiente di quarto grado?

Problemi da 3 punti

- 11. Siano x, y, z numeri reali tali che 3x + 4y + 5z = 50. Determinare il minimo valore che può assumere $x^2 + y^2 + z^2$.
- 12. Quanti sono gli interi m tali che $1 < 2020^{\frac{m}{2020}} < 2$?
- 13. Definiamo la successione di Fibonacci come $F_1=1$, $F_2=1$, $F_k=F_{k-1}+F_{k-2}$ per ogni $k\geq 3$. Considerato il polinomio $P(x)=(x-F_1)(x-F_2)(x-F_3)\dots(x-F_{10})=a_{10}x^{10}+a_9x^9+\dots+a_1x+a_0$, che resto si ottiene dividendo a_8 per 10?
- 14. Sia $p(x) = x^5 + 1007x^3 2x^2 3030x 2020$. Determinare la somma delle potenze quinte delle sue radici reali.
- 15. M è definito come il minimo della funzione

$$f(x) = \sqrt{x^2 - 4x + 7 - 2\sqrt{2}} + \sqrt{x^2 - 8x + 27 - 6\sqrt{2}}$$

Al variare di x nell'insieme dei numeri reali. Determinare M^4 .

Ti invito a consultare il sito <u>matteosalicandro.altervista.org</u> per restare sempre informato sulle nuove gare organizzate!

Se ti va di sostenermi, puoi effettuare una donazione al link https://www.paypal.me/MSalicandro, mi impegnerò a proporre gare più spesso! Ti ringrazio!